I assume that the readers know the Bayes' rule already. If you are not familiar to it, read any kind of textbook about probability, data science, and machine learning. I recommend the book, which I learned Bayes' rule. Bayesians say that you cannot do inference without making assumptions. Thus, Bayesians also use probabilities to describe inferences. The author in the chapter 2 introduces some rules of probability theory and introduces more about assumptions in inference in the chapter 3.

Continue reading

I announce over and over that the chronicle ordering of the post are irrelevant for beginners' favor. There are many blanks I skipped. I would fill the holes later. Variational method During my physics coursework and researches, I used this method countlessly. I even had a book of the name. It is quite simple, but also as big topic as being a book. Simply put, it is a technique to find equations and solutions (sometimes approximate solutions) by extremizing functionals which is mainly just integrals of fields, and treat the functions in the integral, as parameters.

Continue reading

Author's picture

Namshik Kim

physicist, data scientist

Data Scientist

Vancouver, BC, Canada.